
Document created by Dilemma 2012 - 1 -

VAG EDC15P
A detailed description for Bosch EDC15P ECUs used in VAG cars

Document created by Dilemma 2012 - 2 -

Table of content

Introduction .. - 3 -

Hardware .. - 4 -

Overview of the board ... - 4 -

Main CPU: Infineon C167 ... - 5 -

Flash eprom: Am29F400 .. - 6 -

ECU Pinout .. - 7 -

Software.. - 9 -

Software information data ... - 11 -

Reading the code ... - 11 -

Maps and variables.. - 12 -

Getting the map addresses .. - 12 -

Validating the entries in the collection ... - 12 -

Labelling the maps ... - 13 -

Tuning EDC15P .. - 14 -

Communication with the ECU .. - 20 -

Connection diagram .. - 20 -

KWP1281 ... - 20 -

Wakeup procedure for normal mode ... - 20 -

Appendix I: Building a high speed K-line interface .. - 21 -

Schematic .. - 21 -

Parts information .. - 21 -

Document created by Dilemma 2012 - 3 -

Introduction

The Bosch EDCxx series (Electronic Diesel Control) ECUs is a widely used system for modern diesel
engines. It is used by BMW, VAG, Opel, SAAB and many others. This document and the described VAG
EDC15P suite software will only focus on the Volkwagen Audi Gruppe (VAG) specific implementations in
the EDC15P models. These ECUs are used in the PD engines (Pumpe Duse) from Volkswagen, Audi,
Skoda and Seat. Other EDCxx ECUs may work in a similar fashion but will differ in certain areas.

The document describes the EDC15P ECU in detail. It will first describe the hardware and proceed with a
even more detailed description of the software that is running in the ECU so that we can learn how to
tweak and tune the ECU to match the hardware – altered or not – that is on the car better.

Special thanks for getting all this together go out to rkam, mtx-electronics, Pixis5 and others on
ecuconnections.com and chiptuners.org.

Document created by Dilemma 2012 - 4 -

Hardware

Overview of the board
The ECU contains a multi-layer printed ciruit board (PCB) which holds a lot of SMD components. The
main component are – logically: Main CPU, Flash program storage, SRAM memory (working memory),
EEPROM (for storing mileage, immo etc) and a lot of input/output (I/O).

Document created by Dilemma 2012 - 5 -

Main CPU: Infineon C167
 16 bit CPU

Datasheet documents

http://trionic.mobixs.eu/EDC15P/c167cr_ds.pdf

http://trionic.mobixs.eu/ EDC15P /c167cr_um.pdf

Document created by Dilemma 2012 - 6 -

Flash eprom: Am29F400

The flash contains the program and maps for the ECU. EDC15P has 512KB (4 Mbit) flash memory in
which it can store multiple map segments for different situations (automatic gearbox, manual gearbox,
quattro etc). Switching between these segments is generally called “recoding”. Strangly DQ4 is used for
boot pin (held low during startup, this will force the ECU in boot mode).

Document created by Dilemma 2012 - 7 -

ECU Pinout

Pin number Color Description

1 Red/violet +12V (supply voltage)
2 Red/violet +12V (supply voltage)
4 Brown/red Ground
5 Brown/red Ground
6 Orange/brown CAN-L
7 Orange/black CAN-H
16 Orange/black K-line diagnostics + flashing (KWP1281 + KWP2000)
37 Ignition switch (switch +12V)

Document created by Dilemma 2012 - 8 -

Document created by Dilemma 2012 - 9 -

Software

Once we download the data from the ECU with a MPPS, Galletto 1260, BDM or some other means to do
a full read we can load the binary file into EDC15P Suite (see http://trionic.mobixs.eu)

We can see the most important maps being automatically detected and we can change them to our
likings. Be careful though, you need to know what you are doing. The software can generate a
differences list between two files as well and if we compare a stock file to a tuned file we can see only a
few maps get edited normally.

Figure 1: differences between stock and tuned maps

Document created by Dilemma 2012 - 10 -

Figure 2: stock boost map

Figure 3: Tuned boost map

Document created by Dilemma 2012 - 11 -

Software information data

In the software, the identifiers are stored as well about HW revision, SW version, VAG partnumbers etc.
This data is stored in ASCII in the binary file and looks something like this:

0281010981 is the hardware ID
1037366273 is the Bosch software ID
038906019FT is the VAG number

Reading the code
To be able to understand the software better we’ll need to dive into the world of assembler language.
This is a sort of intermediate between understandable human language and the operation codes used
by the microprocessor. Once we can read the assembler language (assembly for short) we can track all
the things the microprocessor is told to to when the program is running. This is very valuable
information because we don’t have first hand information from either Bosch or VAG that can tell us in
details what the ECU does.

We convert the binary file into assembly language we need to disassemble the file. We can do that by
running a disassembler like IDAPro or a seperate disassembler for the specific uC. This disassembler can
be found here on the website.

Disassembler C167 http://trionic.mobixs.eu/EDC15P/C167d.rar

 Once we disassemble the binary file we have an file containing the assembly listing in which we can
start to explore and understand the internal workings of EDC15P.

Document created by Dilemma 2012 - 12 -

Maps and variables

Determining the location and type of maps and variables in the EDC15P binaries is quite a hassle. To be
able to detect the available maps we have to do some tricks and make a couple of assumptions in the
algorithm used. This chapter will describe – in detail – what the EDC15P Suite software does to fetch the
maplist from the file.

Getting the map addresses
First we need to lookup the addresses for the maps that we can find. The software parses the entire
binary file for IDs and length bytes that are *probably* maps and stores this in a collection.

Validating the entries in the collection
Now we have a list of addresses with which we can work. For each address that we found we validate
the data found at that address. For example:

Document created by Dilemma 2012 - 13 -

The first two marked bytes (0x2E 0xEC) tell us it might be the start of an axis (the software has a list of
known ids for this) It then validate the second pair of bytes (0x10 0x00). If this value looks like a valid
length it starts to read data from that point on (0x10 byte pairs). Next it evaluates whether there is a
second axis after the first one. The ID that is read is 0x36 0xC0 in this case and the length of the second
axis is 0x0A 0x00. It now knows that this map is 16 x 10 values in dimensions, it knows the values for
both axis (the data after the length indicators) and it knows the starting address and length of the map
data. This procedure is done for all addresses found in the collection and the software stores the
validated maps in a new collection.

Labelling the maps
This is possibly the part that has the most assumptions in it. Most maps are named by looking at the
dimensions and their axis IDs. In some files though, there are multiple maps with the same properties. In
that case, the software also looks at (for example) the axis values or the map structure.

Document created by Dilemma 2012 - 14 -

Tuning EDC15P

This chapter will describe the basic mapping you will need for a simple stage 1. Complicated mappings
for altered hardware (airmass sensors, mapsensors, turbo’s, bigger injectors etc) are not described here.
It will also give a good overview on what the EDC15P Suite has to offer.

The maps needed for a simple stage 1 are;

 Driver wish map
 Torque limiter
 Smoke limiter
 Injection duration map
 EGR map (optionally)
 Boost target map
 N75 duty cycle map (e.g. wastegate/VG control)
 Boost limit map
 Single value boost limiter

Document created by Dilemma 2012 - 15 -

Driver wish map
The driver wish map determines not only the maximum torque/power output of the car but also the
driveability of it. It determines the amount of requested fuel for the percentage of accelerator pedal
depression and engine speed (e.g. for every throttle position % and engine speed there is a value that
tells the amount of requested fuel for that specific point).

As you can see, the maximum (for throttle) request amount of fuel is 70 mg/stroke in this file.

Document created by Dilemma 2012 - 16 -

Torque limiter
To prevent the transmission and drivetrain components to suffer too much from low end torque the
output power is restricted in low engine speeds. It also lets you limit torque when atmospheric pressure
is lower then average (e.g. high in the mountains). This is done to prevent the turbo from overrevving.

Document created by Dilemma 2012 - 17 -

Smoke limiter
The smoke limiter is there to prevent excessive smoke to appear when the user depresses the
accelerator pedal. Smoke is generated when the air to fuel ratio in a diesel engine are lower than 1:17.
The smoke limiter tells the ECU not to inject more than the calibrated amount of fuel for any given
amount of air entering the engine (airmass sensor data). If the driver wish map indicates (requests) 70
mg of air but there is only 1050 mg of air entering the engine the smoke limiter would limit the injected
quantity to 55 mg of fuel @2750 rpm.

Document created by Dilemma 2012 - 18 -

Injection duration map
The injected amount of fuel determines the amount of power produced (upto a certain limit anyway).
We can roughly estimate the amount of torque to be 1.5 * #cylinders * IQ (Injected Quantity). Injecting
60 mg/stroke in a 4 cylinder engine would then result in roughly 1.5 * 4 * 60 = 360 Nm of torque.
Calculating power from torque can be done with this formula: Power (hp) = (Torque (Nm) * rpm)/7121.
Injecting the same 60 mg/stroke at 4000 rpm results in 360 * 4000 / 7121 = 202 hp.

This map tells the ECU how many crankshaft degrees it takes at a given engine speed to injected the
requested amount of fuel.

Document created by Dilemma 2012 - 19 -

EGR map
The EGR (Exhaust Gas Recirculation) map determines how much fresh air is allowed to enter the engine
for a given injection quantity and engine speed whenever the EGR function is active. The remainder of
the amount of air is fed back into the engine by the EGR system. Since this is hot, contaminated air, we
don’t want this in our engine from a performance point of view.

Document created by Dilemma 2012 - 20 -

Communication with the ECU

Connection diagram

ECU connector: This is looking at the connector on the ECU

This is the socket-part, connector part is mirrored

There are three methods of communication that can be used with a EDC15P ECU.

 KWP1281
 KWP2000
 Boot mode communication

KWP1281

To activate KWP1281 communication we need to connect a K-line interface to the ECU on pin 16 and
after the 5 baud wake-up procedure communication can commence at 9600 baud.

Wakeup procedure for normal mode

To be able to communicate in normal mode, the ECU needs to be aware of the fact that there is a
diagnostics device connected to pin 16 on the K-line. To let the ECU know we need to send a 0x01 byte
to the port at 5 baud (!). After a correct wakeup byte on the 16 pin we will receive a response from the
ECU at 9600 baud. This response will be 0x55 0x01 0x8A in which the 0x55 is the acknowledge and the
0x01 and 0x8A are the keywords used to communicate with the ECU. After reception of this sequence
we need to send an acknowledge message to the ECU which is the inverted last keyword which will be
0x75.

Document created by Dilemma 2012 - 21 -

Appendix I: Building a high speed K-line interface

The following information is sourced from skpang.co.uk.

Schematic

Parts information

Figure 4: MAX232 and MC33290

